Quantum computing -- UCC ansatz

Unitary Coupled Clusters (UCC) ansatz

Article

The UCC ansatz writes:

\[|ΨUCC=eˆTˆT|ΨHF\]

where ${ \hat{T} = \hat{T}{1} + \hat{T}{2} + … }with{ \hat{T}_{i} }isanoperatorexciting{ i }particlesoutoftheHartreeFock(HF)referencestate.Inthesinglecase({ i = 1 })andforonlytwoshellslabeledby{ n = 0,1 }$, one has:

\[eˆTˆT=ea0a1a1a0\]

As such, this ansatz cannot be used together with the VQE method (see link) and must be parametrized. To this end, one simply adds a parameter θ in the exponential.

\[U(θ)=eθ(a0a1a1a0)\]

Moreover, the creation and annihilation operators can transformed into the X, Y, and Z gates acting on qubits using the Jordan-Wigner transformation:

ˆan12[n1j=0(Zj)](XniYn) ˆan12[n1j=0(Zj)](Xn+iYn)

It follows that:

ˆa012(X0iY0) ˆa012(X0+iY0) ˆa112(Z0)(X1iY1) ˆa112(Z0)(X1+iY1)

and hence:

a0a1a1a012(X0iY0)12(Z0)(X1+iY1)12(Z0)(X1iY1)12(X0+iY0) =14[(X0X1+iX0Y1iY0X1+Y0Y1)(Z0)+Z0(X1X0+iX1Y0iY1X0+Y1Y0)] =14[X1(Z0X0X0Z0)+Y1(Z0Y0Y0Z0)+iY1(Z0Y0+Y0Z0)iY1(Z0Y0+Y0Z0)] =i2(X1Y0Y1X0)

It appears that the operator in the exponential writes:

X1Y0Y1X0=2(0000 00i0 0i00 0000)

This is equivalent to a Y gate in the subspace defined by |01 and |10, and so the exponential operator is equivalent to a rotation operator around the y axis in this subspace. One can then emulate the effect of this operator by starting from the HF reference state |00, flip one qubit to |1 using a X gate, apply a rotation ${ {R}{Y}(\theta) = {e}^{-i \frac{\theta}{2} Y } }onthesecondqubit(alsonoted{ Y(\theta) }),andfinallyflipthefirstqubitto{ \ket{0} }onlyifthesecondqubitis{ \ket{1} }usingaCNOTgatefrom2to1(alsonoted{ \text{CNOT}{01} }insteadof{ \text{CNOT}_{10} }$ for usual one). This is how the UCC ansatz was simplified in Phys. Rev. Lett. 120, 210501 (2018) (for details see link).

This results in the following wave function after the first operations:

|Ψ(t1)=X|0Ry(θ)|0 =(01 10)(1 0)(cos(θ2)sin(θ2) sin(θ2)sin(θ2))(1 0) =|1(cos(θ2)|0+sin(θ2)|1) =cos(θ2)|10+sin(θ2)|11

and then after the two-quibit gate one has:

|Ψ(t2)=CNOT01|Ψ(t1) =(1000 0001 0010 0100)[cos(θ2)(0 0 1 0)+sin(θ2)(0 0 0 1)] =cos(θ2)(0 0 1 0)+sin(θ2)(0 1 0 0) =cos(θ2)|10+sin(θ2)|01

The UCC ansatz wave function looks like a parametrized Bell state:

|ΨUCC=cos(θ2)|10+sin(θ2)|01