Quantum computing -- UCC ansatz
Unitary Coupled Clusters (UCC) ansatz
Yangchao Shen, Xiang Zhang, Shuaining Zhang, Jing-Ning Zhang, Man-Hong Yung, and Kihwan Kim
Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure
Phys. Rev. A 95, 020501(R) (2017) articleP. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean, R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Jeffrey, E. Lucero, A. Megrant, J. Y. Mutus, M. Neeley, C. Neill, C. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, P. V. Coveney, P. J. Love, H. Neven, A. Aspuru-Guzik and J. M. Martinis5
Scalable Quantum Simulation of Molecular Energies
Phys. Rev. X 6, 031007 (2016) article arXivJ. R. McClean, J. Romero, R. Babbush and A. Aspuru-Guzik
The theory of variational hybrid quantum-classical algorithms
New J. Phys. 18, 023023 (2016) article arXivA. Peruzzo, J. McClean, P. Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, P. J. Love, A. Aspuru-Guzik and J. L. O’Brien
A variational eigenvalue solver on a photonic quantum processor
Nature Communications 5, 4213 (2014) article arXivM.-H. Yung, J. Casanova, A. Mezzacapo, J. McClean, L. Lamata, A. Aspuru-Guzik and E. Solano
From transistor to trapped-ion computers for quantum chemistry
Scientific Reports 4, 3589 (2014) article
Article
- E. F. Dumitrescu, A. J. McCaskey, G. Hagen, G. R. Jansen, T. D. Morris, T. Papenbrock, R. C. Pooser, D. J. Dean, and P. Lougovski
Cloud Quantum Computing of an Atomic Nucleus
Phys. Rev. Lett. 120, 210501 (2018) article – arXiv
The UCC ansatz writes:
\[|Ψ⟩UCC=eˆT−ˆT†|Ψ⟩HF\]where ${ \hat{T} = \hat{T}{1} + \hat{T}{2} + … }with{ \hat{T}_{i} }isanoperatorexciting{ i }particlesoutoftheHartree−Fock(HF)referencestate.Inthe“single”case({ i = 1 })andforonlytwoshellslabeledby{ n = 0,1 }$, one has:
\[eˆT−ˆT†=ea†0a1−a†1a0\]As such, this ansatz cannot be used together with the VQE method (see link) and must be parametrized. To this end, one simply adds a parameter θ in the exponential.
\[U(θ)=eθ(a†0a1−a†1a0)\]Moreover, the creation and annihilation operators can transformed into the X, Y, and Z gates acting on qubits using the Jordan-Wigner transformation:
ˆa†n→12[n−1∏j=0(−Zj)](Xn−iYn) ˆan→12[n−1∏j=0(−Zj)](Xn+iYn)
It follows that:
ˆa†0→12(X0−iY0) ˆa0→12(X0+iY0) ˆa†1→12(−Z0)(X1−iY1) ˆa1→12(−Z0)(X1+iY1)
and hence:
a†0a1−a†1a0→12(X0−iY0)12(−Z0)(X1+iY1)−12(−Z0)(X1−iY1)12(X0+iY0) =14[(X0X1+iX0Y1−iY0X1+Y0Y1)(−Z0)+Z0(X1X0+iX1Y0−iY1X0+Y1Y0)] =14[X1(Z0X0−X0Z0)+Y1(Z0Y0−Y0Z0)+iY1(Z0Y0+Y0Z0)−iY1(Z0Y0+Y0Z0)] =i2(X1Y0−Y1X0)
It appears that the operator in the exponential writes:
X1Y0−Y1X0=−2(0000 00−i0 0i00 0000)
This is equivalent to a Y gate in the subspace defined by |01⟩ and |10⟩, and so the exponential operator is equivalent to a rotation operator around the y axis in this subspace. One can then emulate the effect of this operator by starting from the HF reference state |00⟩, flip one qubit to |1⟩ using a X gate, apply a rotation ${ {R}{Y}(\theta) = {e}^{-i \frac{\theta}{2} Y } }onthesecondqubit(alsonoted{ Y(\theta) }),andfinallyflipthefirstqubitto{ \ket{0} }onlyifthesecondqubitis{ \ket{1} }usingaCNOTgatefrom2to1(alsonoted{ \text{CNOT}{01} }insteadof{ \text{CNOT}_{10} }$ for usual one). This is how the UCC ansatz was simplified in Phys. Rev. Lett. 120, 210501 (2018) (for details see link).
This results in the following wave function after the first operations:
|Ψ(t1)⟩=X|0⟩⊗Ry(θ)|0⟩ =(01 10)(1 0)⊗(cos(θ2)−sin(θ2) sin(θ2)sin(θ2))(1 0) =|1⟩⊗(cos(θ2)|0⟩+sin(θ2)|1⟩) =cos(θ2)|10⟩+sin(θ2)|11⟩
and then after the two-quibit gate one has:
|Ψ(t2)⟩=CNOT01|Ψ(t1)⟩ =(1000 0001 0010 0100)[cos(θ2)(0 0 1 0)+sin(θ2)(0 0 0 1)] =cos(θ2)(0 0 1 0)+sin(θ2)(0 1 0 0) =cos(θ2)|10⟩+sin(θ2)|01⟩
The UCC ansatz wave function looks like a parametrized Bell state:
|Ψ⟩UCC=cos(θ2)|10⟩+sin(θ2)|01⟩