DMRG in nuclear physics
Density matrix renormalization group
First articles
S. R. White
Density-matrix algorithms for quantum renormalization groups
Phys. Rev. B 48, 10345 (1993) articleS. R. White
Density matrix formulation for quantum renormalization groups
Phys. Rev. Lett. 69, 2863 (1992) article
Book and Review
U. Schollwöck
The density-matrix renormalization group
Rev. Mod. Phys. 77, 259 (2005) articleI. Peschel, X. Wang, M. Kaulke, and K. Hallberg
Density-Matrix Renormalization - A New Numerical Method in Physics
Springer-Verlag Berlin Heidelberg, 1st, 1999 book
Density matrix renormalization group in nuclear physics
$m$-scheme shell model formulation
- T. Papenbrock, and D. J. Dean
Density matrix renormalization group and wavefunction factorization for nuclei
J. Phys. G 31, S 1377 (2005) article- Convergence issue noticed in $m$-scheme
- S. Pittel, and J. Dukelsky
The density matrix renormalization group in nuclear physics: a status report
Rev. Mex. Fis. 49 Supl. 4, 82 (2003)- Suggest $j$-scheme to solve convergence issues in $m$-scheme
J. Dukelsky, S. Pittel, S. S. Dimitrova, and M. V. Stoitsov
Density matrix renormalization group method and large-scale nuclear shell-model calculations
Phys. Rev. C 65, 054319 (2002) article- S. Pittel, and J. Dukelsky
The density matrix renormalization group: a new approach to large-scale nuclear structure calculations
Rev. Mex. Fis. 47 Supl. 2, 42 (2001)- Convergence issue noticed
J. Dukelsky, and S. Pittel
New approach to large-scale nuclear structure calculations
Phys. Rev. C 63, 061303(R) (2001) article- J. Dukelsky, and G. G. Dussel
Application of the density matrix renormalization group to the two level pairing model
Phys. Rev. C 59, R3005(R) (1999) article
Convergence issues in $m$-scheme solved in $j$-scheme shell model
S. Pittel, and B. Thakur
The density matrix renormalization group and the nuclear shell model
Rev. Mex. Fis. 55, 108 (2009)B. Thakur, S. Pittel, and N. Sandulescu
Density matrix renormalization group study of ${ {}^{48}\text{Cr} }$ and ${ {}^{56}\text{Ni} }$
Phys. Rev. C 78, 041303(R) (2008) articleS. Pittel, B. Thakur, and N. Sandulescu
The density matrix renormalization group and the nuclear shell model
Int. J. Mod. Phys. E 17, 122 (2008) articleS. Pittel, and N. Sandulescu
Density matrix renormalization group and the nuclear shell model
Phys. Rev. C 73, 014301 (2006) articleJ. Dukelsky, and S. Pittel
The density matrix renormalization group for finite Fermi systems Rep. Prog. Phys. 67, 513 (2004) article
Reordering of states in the medium to reduce the $m$-scheme convergence issue
- Ö. Legeza, L. Veis, A. Poves, and J. Dukelsky
Advanced density matrix renormalization group method for nuclear structure calculations
Phys. Rev. C 92, 051303(R) (2015) article
$j$-scheme shell model formulation in the Berggren basis (Gamow-DMRG)
J. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Dukelsky
Density matrix renormalization group approach to two-fluid open many-fermion systems
Phys. Rev. C 79, 014304 (2009) articleJ. Rotureau, N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Dukelsky
Density matrix renormalisation group approach for many-body open quantum systems
Phys. Rev. Lett. 97, 110603 (2006) article
Idea of the Gamow-DMRG emitted in the middle of a paper
- N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Rotureau
Gamow shell-model description of weakly bound and unbound nuclear states
Revista Mexicana De Fisica 5 Suplemento 2, 74 (2004)
Density matrix renormalization group applied on nuclear open quantum systems (J. Rotureau)
Ab initio Hamiltonians for systems with ${ A=3-6 }$
K. Fossez, J. Rotureau, N. Michel, and M. Płoszajczak
Can tetraneutron be a narrow resonance?
Phys. Rev. Lett. 119, 032501 (2017) article arXivIk Jae Shin, Youngman Kim, P. Maris, J. P. Vary, C. Forssén, J. Rotureau, and N. Michel
Ab initio no-core solutions for ${ {}^{6}\text{Li} }$
J. Phys. G 44, 075103 (2017) article arXivG. Papadimitriou, J. Rotureau, N. Michel, M. Płoszajczak, and B. R. Barrett
Ab-initio no-core Gamow shell model calculations with realistic interactions
Phys. Rev. C 88, 044318 (2013) article arXiv
Effective Hamiltonians with up to 10 valence nucleons
K. Fossez, J. Rotureau, and W. Nazarewicz
Energy spectrum of neutron-rich helium isotopes: complex made simple
Phys. Rev. C 98, 061302(R) (2018) article arXivM. D. Jones, K. Fossez, T. Baumann, P. A. DeYoung, J. E. Finck, N. Frank, A. N. Kuchera, N. Michel, W. Nazarewicz, J. Rotureau, J. K. Smith, S. L. Stephenson, K. Stiefel, M. Thoennessen, and R. G. T. Zegers
Search for excited states in ${ {}^{25}\mathrm{O} }$
Phys. Rev. C 96, 054322 (2017) article arXivK. Fossez, J. Rotureau, N. Michel, and W. Nazarewicz
Continuum effects in neutron-drip-line oxygen isotopes
Phys. Rev. C 96, 024308 (2017) article arXivK. Fossez, J. Rotureau, N. Michel, Q. Liu, and W. Nazarewicz
Single-particle and collective motion in unbound deformed ${ {}^{39}\text{Mg} }$
Phys. Rev. C 94, 054302 (2016) articleG. Papadimitriou, A. T. Kruppa, N. Michel, W. Nazarewicz, M. Płoszajczak, and J. Rotureau
Charge radii and neutron correlation in helium halo nuclei
Phys. Rev. C 84, 051304(R) (2011) article
Introduction of natural orbitals
The introduction of the natural orbitals basis dramatically accelerated the convergence of the energy with the number of iterations and effectively rendered the sweep phases unnecessary. This was introduced in:
- Ik Jae Shin, Youngman Kim, P. Maris, J. P. Vary, C. Forssén, J. Rotureau, and N. Michel
Ab initio no-core solutions for ${ {}^{6}\text{Li} }$
J. Phys. G 44, 075103 (2017) article arXiv
Natural orbitals
- L. Brillouin
Diffraction de la lumière par des ultrasons
Actualités Scientifiques et Industrielles. No. 59, 71, 159, Hermann et Cie., Paris (1933)